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Introduction

In our previous papers [8] and [9], we studied fibred spaces with invariant
affine connection and those with invariant Riemannian metric, the fibres being
1-dimensional in both cases.

The idea of fibred spaces with invariant affine connection goes back to the
representation of spaces with projective connection. To represent an #-dimen-
sional manifold with projective connection, Princeton School used an (n+1)-
dimensional manifold with affine connection admitting a concurrent vector
field with respect to which the affine connection is invariant (See for example
[5]1), and Dutch School used a slightly general manifold with affine connection
(See for example, [4]). They all identified a point in the manifold with pro-
jective connection with a_trajectory of the vector field with respect to which
the affine connection is invariant.

The idea of fibred spaces with invariant Riemannian metric goes back to the
five dimensional Riemannian space considered by Th. Kaluza{l] and O.
Klein [2] for getting a unified field theory of gravitation and electromagnetism..
To represent the space-time, they used a 5-dimensional Riemannian space
admitting a unit vector field with respect to which the Riemannian metric is
invariant, and identified a point in the space-time with a trajectory of the unit
vector field with respect to which the 5-dimensional Riemannian metric is
invariant.

In the present paper, we study fibred spaces with Riemannian metric under
the assumption that the Riemannian metric is projectable instead of being in-
variant (See [3], [7]). In §1, we state definitions and study some properties of
a fibred space with projectable Riemannian metric, and in §2 we develop the
tensor calculus in the space. §3 is devoted to the discussions on the Rieman-
nian connection and the induced connection. We discuss geodesics in §4, and
structure equations and curvatures in §5. In the last §6, we assume that the
Riemannian metric is invariant with respect to a not necessarily unit vector
field tangent to the fibre, and the manifold is then slightly more general than
that we studied in [9].

Communicated March 30, 1967.
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1. Fibred space with projectable Riemannian metric

Let M and M be two differentiable manifolds of dimensions » + 1 and n
respectively, and assume that there exists a differentiable mapping = : A —M,
which is onto and of the maximum rank n. (The manifolds, objects and
mappings we discuss in the sequel are supposed to be of differentiability
class C=, and the manifolds are assumed to be connected.) Then, for each
point P of M, the inverse image =-(P) of P is a 1-dimensional submanifold
of M. We denote z-(P) by F,, and call F the fibre over the point P of M.
We suppose that every fibre F is connected, and moreover that there are
given in M a vector field C tangent to the fibre and a positive definite
Riemannian metric g satisfying the condition

(1.1) 8C,0)=1.

If we introduce in M a 1-form j defined by the equation
(1.2) WX = &C, X),

X being an arbitrary vector field in M, we have

(1.3) #C) =

The set (M, M, z; C, g) satisfying the conditions above is called a fibred
space with Riemannian metric g. We suppose moreover that the condition

(1.4 (X, 7)=0

is satisfied for any two vector fields X and ¥ in M such that #(X) = #¥)=0
where & denotes the operator of Lie derivation with respect to C. If this is
the case, the fibred space (M, M, z;C, g) is called a fibred space with pro- -
jectable Riemannian metric §. We call M and M the toral space and the base
space respectively. The vector field C and the 1-form 7 are called the struc-
ture field and the structure form respectively. The mapping = : M —M is called
the projection. 1f there is no fear of confusion, we call, for the sake of
simplicity, a fibred space (M, M, z; C, §) with projectable Riemannian metric
simply a fibred space M. The n-dimensional distribution defined in M by the
equatlon 7 = 0 is called the field of horizontal planes and its value at a pomt
of M is called the horizontal plane at that point.

We shall introduce some notations and terminologies for fibred space
(M, M, z; C, &) (Cf. [8], [9]). T(M) is the tangent bundle of M. F (M) is
the space of all tensor fields of type (7, s) in M. We put (M) = 32, .7 (M).
The notations T(M), J (M) and (M) denote the respective spaces with
respect to M corresponding to T(M), 7 7(M) and .7 (M) respectively.
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Horizontal parts. A linear endomorphism T — T" of 9 (M) is defined by
the following properties:

(H.1) fr=7 for fegyM),
(H.2) X=X —5X)C for XeITyM),
(H.3) " = — a(C)y for eI YM),
(H.4) STy =S T") for S, TeTM).

The tensor field T¥ is called the horizontal part of T for any element T of
T (M). If a tensor field T in M satisfies the condition 7 = T#, then T is
said to be horizontal. On putting T =T — T/, we call T¥ the non-hori-
zontal part of T for any element T of 9 (M). In particular, for any element
X of 7YM) and any element & of I %(M), X* and &" are called the verrical
parts of X and & respectively. The space of all horizontal tensor fields is
denoted by 7 #(M). If we put 77:(M) = F *(M)N 7 ;(M), we have 7 /(M)
= 5.7 " (M).

Projectable tensor fields. When an element T of 9 (M) satisfies the condi-
tion (L(T1))" = 0, we say that T is projectable. The space of all projectable
tensor fields in M is denoted by 22(M). If we put 2(M) = »(M)N T (M),
PU(M) = P(MYN T H(M), P"(M)= P(M)N 7 "(M), then we have

PMy = T P(M), P"(M)= Y, P"(M).

We see that the Riemannian metric g given in M which satisfies (1.4) is pro-
jectable, i.e., ge?%M). In fact, from (1.4) we have (¥ §)" = (¥ g"
+ L gV = (£ g")", since §¥ = 7 & 7, and consequently (¥ g")" = (if’(f;‘
® 7))¥ = 0. If we take an arbitrary element & of 2//(M), we find (& @)(C)
= Z((C)) — @(& C) = 0, which implies ¥ @ = 0 because of (£ @)" = 0.
Thus we see that, for any element T of P"Y(M), the condition T =0
holds.

Lifts. We shall introduce the operation of taking lifts (Cf. [8], [9]). The
operation of taking lifts is a linear homomorphism T — T of T(M) into T(M)
characterized by the following properties:

(L.1) fle=for for feTYM);

(L.2) For any element X of 7 (M), there exists a unique element X'* of
T HYM) such that zX~ = X}

(L.3) o" = *z(0w) for we TUM);

(L.4) SRT): = (SR (TL) for S, TeT(M);

where the differential mapping of the projection z: M — M is denoted also
by z, and the dual mapping of the differential mapping = by *=z.
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Taking an arbitrary element X of (M), we find X’f¢* = (Xf)* and
(LXLYHfL = PL((Xf)*) = 0, f being an arbitrary element of M), i.e.,
(£XL)" = 0. Thus X* belongs to ##}(M). If we take an arbitrary element
w of TYM), we find wl{(XL) = (w(X))" and (&L ot)(X"*) =0, X being an
arbitrary element of TYM), i.e., (& 0*)” = 0. Thus »* belongs to 5””°(M)
Therefore, taking account of (L 4), we see that T* belongs to P"(M) for
any element T of I (M). The element T* of #%(M) is called the lift of T.

Projections. Let f be an element of #YM). Then we have £ f = 0.
Taking an arbitrary element X of #YM), we find £(Xf) =0 for any ele-
ment f of TYM). If @ is an arbitrary element of #YM), then we find
ZL(ad(x)).= 0 for any element X of 7 }(M). Therefore, we can define a linear
homomorphism p: #(M) — 7 (M) by the following properties .

(P.1) C@HPY=fP) for feaid),

where P is an arbitrary point such that z:(f’) = P, an arbitrary point of M.
(P.2) PX)f = p(X(f+)) for XeZyM),

f being an arbitrary element of 7 YM).

(P.3) (P&)X) = p(@(X™)) for &ePYM),

X being an arbitrary element of 5 YM).

(P.4) pSRT)= S ®PT) for §,Te Q(M) .

The tensor field pT is called the projection of T for any element T of #(M).
Taking account of (L.1)~(L.4) and (P.1)~(P.4), we easily find

pTH =T for Ted (M); @Dt =T" for TePM).

Thus the two spaces #¥(M) and 7 (M) are isomorphic to each other and
p: PH(M) — (M) is the isomorphism between them. The operation of
taking lifts is the inverse of the projection p restricted to 27(M). We have
now

Proposition 1.1. In a fibred space with projectable Riemannian metric, we
have, for any elements X,Y of #Z\M),

(1.5) [X,¥1e 2y M), [X, V)# = (X, Yoy, (X0, Y)Y = - 20(X, T)C,
and p[X, V] = [pX, p¥1, where § is a 2-form defined by the equation
(1.6) 2 = (dp)"

in M (Cf. [8], [9)).
Formal tensor products. We denote by 7 (M) ¥ 77 (M) the formal tensor
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product, i.e., the tensor product of the two spaces J (M) and .7 #(M) re-
garded as two abstract tensor spaces over M. Since /(M) is a subspace of
F (M), we denote by j: 7 (M) — (M) the injection. We shall now intro-
duce a linear homomorphism i: (M) .74 (M) — (M) by the following
property: ’

1.1 iTEH=TQRjS) for TeT M), ScT"(M).

The induced metric. Since the Riemannian metric g given in M is project-
able, its projection g = pg is a positive definite Riemannian metric in the
base space M. We call g the induced metric of M. We have the equation

(1.7) (8(X, YN = gX*, Y for X,YeT (M),
or equivalently (See [3])
(1.8) g(pX, pY) = p(a(X.¥)) for X.Yery(M).

The induced connection. Let there be given an affine connection 7 in the
total space M, and assume that the vector field ;X is projectable for any
two elements X and ¥ of ##}(M). Then the glven affine connection ¥ is said
to be projectable. When an affine connection ¥ is projectable, we can intro-
duce an affine connection F in the base space M by the equation

(1.9) VX = p(FyLX"y,

X and Y being arbitrary elements of 9 Y(M). The affine connection F thus
introduced is called the projection of ¥, or the induced connection in M. It
is easily verified that if the given projectable affine connection ¥ is torsionless,
so is the induced connection V. We have now the following formulas :

FoT = p(FyeTh) for TeT(M),YeTiM),

(1.10) S - oo
-p(FiTYy=F,T for T ep(M),Y e P"(M),

Y and T being defined by Y = p¥ and T = pT'. We shall now state

Proposition 1.2. In a fibred space with projectable Riemannian metric g,
the Riemannian connection  determined by g is also projectable, and the
projection V of V coincides with the Riemannian connection determined by
the induced metric g = pg in the base space.

Proposition 1.2 will be proved in §3 (Cf. Proposition 3.1). In the sequel,
we always denote by 7 the Riemannian connection determined by the pro-
jectable Riemannian metric g in the total space M.

Van der Waerden-Bortolotti covartant derivatives. Given an element ¥ of

T YM), we define a derivation V7 in the formal tensor product 7 (M) .7 1(M)
by the following properties:
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W.1) Vol =VyT for TeT(M).
W.2) V28 = (FouS + 7(V)£S)" for SeTHM).
W.3) PuT§S)=E:DeS + T8 for TeT(M),$eT"(M).

For any element W of (M) # 7 #(M), the correspondence ¥ — VW defines
an element FW of 7 (M) # 7 #(M), which is called the van der Waerden-
Bortolotti covariant derivative of W. When W and Y belong respectively to
PH(M) and PHYM), VW is an element of PU(M).

The second fundamental tensors. We define an element h of 5 /YM) by
equation

(1.11) hY, X)C = (F,u X1y,

X and Y being arbitrary elements of (M), and define an element A of
JF HY(M) by the equation

(1.12) AX = —7,,C,

X being an arbitrary element of 7}(M). The tensor fields 4 and H are called
the second fundamental tensors of the given fibred space.

Applying the operator V,, » on both sides of the identity g¢(C, X¥) = 0, we
find

1.13) kY, X) = gAY, X),

X and Y being two arbitrary elements of J5(M). If we take an element X
of #YM), then ¥ X" = [C, X ”] is vertical, and hence ¥ \,,,C (FeXM)H,
which 1mp11es

(1.14) HX = — (F-Xmy",

X bemg an arbitrary element of @(M) On the other hand, we have
V:8(XH, Y#) = 0 for any two elements X and ¥ of #4(M). Thus we obtain

(1.15) gHX, V)= — gX, AY),

because of (1.14). From (1.13) and (1.15), we have
Proposition 1.3. In a fibred space with projectable Riemannian metric g,
the second fundamental tensors h and H are horizontal, and have the properties

X, VY+ kY, X)=0, KX,Y)=g@HX,Y),
X and Y being arbitrary elements of T} WM )
Since #X# is vertical for any element X of (M), we can put

(1.16) WXC =— X" for X’egv:,(m),
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and easily see that (1.16) defines in M a l-form i, which is horizontal.
Taking account of (1.11), (1.12), (1.14) and (1.16), we have the following
formulas:

"'<|

(1.17) FeY =—AY —I(V)C, for X,V es'y(M),

where P is a horizontal vector field defined by

(1.18) gP,Z2)y=4Z) for ZeTYM).

The first equation of (1.17) reduces to

(1.19) FeX = 7y X): + B(Y, X)C for X, Y ezr?yM),

where X = pX and Y = p¥. Equation (1.19) is called the co-Gauss equation,
and the second equation of (1.17) is called the co-Weingarten equation. As
a consequence of (1.5) and (1.17), we have the equation

(1.20) h= -0 = — (dp)".

When the 1-form 1 and one of thc second fundamental tcnsors h and H
vanish identically in M, equations (1.17) reduce to

=Xy, P:€ =0, F;X =0, F.C=0

for any two elements X and ¥ of 2##}(M), where X = pX and Y = pY. As
is well known, when the above equations are satisfied, the Riemannian mani-
fold M is locally a Pythagorean product of a Riemannian space and a straight
line. In such a case, we say that the fibred space is locally trivial.

The field of horizontal planes defined by 7 = 0 is integrable if and only if
dp =0 (mod 7), i.e., if and only if h= -0 = — (di)!" = 0 (Cf. (1.20)).
Thus we have

Proposition 1.4. In a fibred space M with projectable Riemannian metric,
the field of horizontal planes defined by 7 = 0 is mtegrable, if and only if the
second fundamental tensor h or H vanishes identically in M.

The vector field P appearing in the last equation of (1.17) is the first curva-
ture vector of the fibre. Thus the vector field P vanishes identically in M if
and only if each of the fibres of M is a geodesic. Thus, taking account of
Proposition 1.4, we have

Proposition 1.5. A fibred space with projectable Riemannian metric is local-
ly trivial if and only if each of its fibres is a geodesic and the field of hori-
zontal planes is integrable.

When the curvature vector field P of fibre vanishes identically in M, the
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given fibred space M with projectable Riemannian metric § reduces to that
with invariant Riemannian metric g in the sense of [9].

2. The tensor calculus in a fibred space with
projectable Riemannian metric

Let (M, M, z; C, g) be a fibred space with projectable Riemannian metric
. Since the projection z: M — M is differentiable and of the maximum rank
n everywhere, there exists, for any point P of M, a coordinate neighborhood
U containing P such that U = =(U) is a coordinate neighborhood of the point
P = z(P) in M, and the intersection F, N U is expressed in U by equations
yt=a?, ---, y» = a* with constants a?, - - -, a* with respect to certain coordi-
nate system (y%, - - -, y**?) defined in U, where Q is an arbitrary point of U.
We call such a neighborhood U a cylindrical neighborhood of M. Since we
restrict ourselves to cylindrical neighborhoods in M, we call them simply
neighborhoods of M. Given a neighborhood U in M, the set (U, U, z; C, §)
is a fibred space with projectable Riemannian metric g, where U = z(0),
and z, C and g denote respectively the restrictions of =, C and g given in
M to U. In the sequel, we shall identify the operations of taking horizontal
parts, lifts, projections, etc. in (U, U, =; C, ) with the corresponding opera-
tions in (M, M, =, C, g) respectively.

Let (x*) be coordinates defined in U of M, and (£%) coordinates defined
in U==(U) C M. (The indices A, i, j, k, m, 5, t run over the range {1,2, - - -,
n+1}, the indices a, b, c,d, e, f the range {1, 2, - - -, n}, and the so-called
Finstein summation convention is used with respect to these two systems of
indices.) We denote by E” and g;; the components of the structure field C
and the projectable Riemannian metric § with respect to (x*) in U. Then
the structure 1-form 7 defined by (1.2) has in U components of the form

(2.1) E,; = g“,Eh, i.e., f/’ = Eidxi .

Taking a point P with coordinates ({°) arbitrarily in U, we may assume that
F, NU be expressed by n equations

-2 go = ge(xt)

in U, where n functions &¢(x*) are differentiable in U, and their Jacobian
matrix (852/0x?) is of the maximum rank n. Putting

2.3) Eqx =38,

yhere d; denotes the operator 9, = 8/0x', we see that n local covector fields
e with components E;* are linearly independent in U. Taking account of
(1.1) and (1.2), we obtain ’
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2.4 E.Ei = gjiE-iEi =1, EEf=0,

because the structure field C is tangent to fibres. Thus the n + 1 local co-
vector fields 7 and @ are linearly independent.
Taking account of (2.4), we see that the inverse of the matrix (E,%, E;) has
the form
h
2.5) (Es E)' = (g,,'j.
where E*,, for each fixed index b, are components of a local vector field B,

in U. Then the n + 1 local vector fields B, and C are linearly independent
in U. The equation (2.5) is equivalent to the conditions

(2.6) EibEi(” = 5“[,, EibEi = O 3
EE~=0, EE =1,

that is,

2.6y  By=48, 9BY=0, O=0, §O)=1,

or to the condition
.7 . E*E", + E.E* ;61’ .

The first and the second equations of (2.6) or (2.6) show that » local vector
fields B, span the horizontal plane at each point of U.

Since the given Riemannian metric g is projectable, taking account of thc
equations # g,;, = V,E, + V,E, and (7 ;E)E' = 0, we can put

(2-8) ggji = Pb(EjbEi + E,‘Eib)

in U, where P, are certain n functions in U. Thus, as a consequence of the
definition (1.2) of 7, we obtain

(2.9) S E;=P,E}.

As was proved in [8], we find £ E,* =0 and . E* = 0. Thus, taking accouut
of (2.6), we find

gEth‘—PbEh, -.TE"=O,

(2.10)
gE,;“—_—O, gE;':PhE,‘b.

Horizontal parts. Let there be given a tensor field, say, 7 of type (1,1)
in the total space M. Then 7 has components of the form

@.11) Tt = T,2EPE", + TOEPE" + ToEE*, + TOE,Ex
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in each neighborhood U of M, where T,2, T,°, T,® and T,° are all functions
in U. Then, taking account of (H.1)~(H.4), we see that the horizontal part
TH of T has in U components T#,» = T,eE 2 E",.

Invariant functions. Let f be an element of #YM). We have, by defini-
tion, & f = 0, which implies that f is expressed as f = f(£2(x*)) in each
neighborhood U of M, where &3(x") are the functions appearing in equation
(2.2) defining fibres. Thus we have 9,f = E;*3,f (Cf. [8]), where 3, denotes
the operator 9, = 9/6§*. Any element f of #YM) is called an invariant func-
tion in M. We shall identify any invariant function f with its projection
f=pf and denote the invariant function f by the same symbol f as its
projection.

Projectable tensor fields, projections and lifts. Let there be given a tensor
field, say, T of type (1,1) in the total space M. Then T is projectable if and
only if it has in each neighborhood U components T ;* of the form (2.11) with
invariant functions T,%, i.e., if and only if ¥ T,* = 0. Thus, taking account
of (P.1)~(P.4), we easily see that for any projectable tensor field, say, T
of type (1,1), its projection T = pT has components 7,*(§) with respect to
coordinates (£¢) defined in U = =(0).

Let there be given a tensor field, say, T of type (1,1) in the base space
M, and T, its components in U = =(U). Then, taking account of (L.l)~
(L.4), we easily see that the lift T- of T has components of the form

(2.12) . Ti'l = Tb”'E,'bE"a

with respect to coordinates (x*) defined in U where 7';* appearing in (2.12)
denotes the lift of 7',2.
Projectable Riemannian metric. 1f we put

(2.13) 8er = gjichEib s

then g,, are invariant functions in U by virture of_ (2.6) and (2.8). Thus, the
projection g = pg has components g, in U = z(U). Taking account of (2.6)
and (2.7), we have the formula

(214) 8 ———gchchib + EjE;.
1f we define g* by the equation
@. 15) (8" = (g;)7% i.e., gy = o7},

then g** are components of an element G of 2¥M) in U. If we define go«
by the equation

(2.16) : (8*) = (8es) %5 L€, gepg®® = 6Y,
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then gbe are invariant functions in U, and hence the projection G = pd has
components g°¢ in U = z(U). We have the formulas

.17 gt = gitERE,?, git = ghEi,Eh, + E'E" .
Moreover, taking account of (2.6), we find the following formulas:

Ef* = g,.8"°E*,, E,=guE",

(2.18) i ‘
Elzb — gh.ngaE;a, Elz - g’”E; R

The curvature vector field of fibres. The |-form i defined by (1.16) being
horizontal, 4 has components of the form

(2. 19) Pi = PbEib, i.e., i: (PbEib)dxi

in each neighborhood U of M, and the curvature vector field P of fibres,
which is defined by (1.18), has components of the form

(2.20) Pt = PeE,e, pa = gup,

where P, are functions appearing in (2.10).

3. The Riemannian connection and the induced connection

The Riemannian connection ¥ determined by the projectable Riemannian
metric g has the Christoffel’s symbols {jhi} constructed from g;; as its coef-

ficients in each neighborhood U of the total space M. For any vector field

X in M, its covariant derivative 7.X has components of the form 7 X"
=9,X"* + {jhi} Xiin U, X* being the components of X in U.
If we take account of (1.17), (2.19) and (2.20), we can put in U

3.1 V,Et, = I'Y,E *E*, + h,EE* — h,°E ,E*, — P,EE",
' V,Er = — hPE;E", + P°EE",,

where P, are the functions appearing in (2.10), P« are defined by P* = g*P,

and I'%,, h., and h,* are certain functions in U. We note here that the func-

tions [z, has the symmetry property I'¢, = I';,. Comparing (1.17) with (3.1),

we see that the second fundamental tensors 2 and H have respectively the

components of the form

(3.2) h;: = hoEfE?, h = hSEQE", .

Therefore, as consequences of Proposition 1.3, we have the following
equations:
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(33.) | Eji + ’;ij =0, ho+ hye = 0,
3.4 Eii = kg, hey = R -
Equations (3.1) are called the co-Gauss equation and the co-Weingarteu

equation respectively. Differentiating covariantly both sides of equations
(2.6), we have, as consequences of (2.6) and (3.1),

ﬁjEia = - F:bchEgb + hcancEi + hba'EjEib - Pu'EjEi s

3.5 N
( ) VjEi = — hchchib + PbEjEib .

Let X and ¥ be two vector fields with components X* and ¥* in M respec-
tively. Then, in each neighborhood U of M, we have X* = X*E", + X°E*
and ¥* = YeE", + Y°E", where X%, X° and Y?, Y? are certain functions in
U. Taking account of (3.1), we see that ;X has components of the form

(P Xy = Ye(F X= — h XO)E*, + Y@, X — h,°X* + P,X")E",

3.6
-0) + Ye(8.X° + h, XP)E? + YO(3,X° — P,X?)E*

9, and d, being defined by 3, = E*,6, and 3, = E"d,, and F X¢ by

(3.7 VXe=0d.X"+ I't,X".

We shall prove that the functions I'¢, are invariant in U. To do this, we
shall first find the Lie derivative & { A ] of the Christoffel’s symbols {]h ] As

is well known, the Lie derivative of {]hl} is given by the equation

h ) [ 5 5
(3.8) 2]} = 3P (L8 + PiLg) — PuLe0)
in each nelghborhood U (Cf. [6]). On the other hand, (2.8) reduces to L
= P,E, + P.E,, P, being defined by P, = P,E,*. Thus we have

h 155 .55 = <
(3.9) 2{jif = FOP A PPIE + O2E + O2E,
— (h*Py + hy"P.)E *EE*, + (E,P; + E ,P,)P* — P,PE",

by virtue of the second equation of (3.5), where we have put

(3.10) Q;i= —(F,P, — ﬁif)]), 0" = Q,g", Pr=Pgnr.

1
7

As is well known, the identities
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. 5 Sy )\ 5 = N AN
hold for any vector field X* and any covector field @, in M (Cf. [6]). Thus
we have, by virtue of (2.10) and (3.9),
(3.11)  LF,ES) = (hPy + hy'P)ESES — O EE\® — O/ EE,®
—(E,P; + E.P)pPe,

(3.12) LW Er) = %(ﬁ,Pi +7:B)+ O + E(EQ") + P,P.

Applying the operator .# to the two equations of (3.5), we find respectively
(3.13) LW,ES) = — (LTHELE? + (haPy + hoP)ESEY
+ (LhESE; + (LhYEEL — (& P)EE;
— PP(ESE, + E,E%),
(3.14) 2L ,E?) = — (Lh)ESE", + P,P* + (h P,)E cE"
+ (¥ P4E,E*, — (P, PY)EE" .

If we compare the right-hand sides of (3.11), (3.12) with those of (3.13),
(3.14) respectively, we obtain the following equations:

(3.15) oI, =

(3.16) Lhey = — QEEY, ,S/’P,, = 20,,E'E,
) heP, = (V,P)E!E', P,Pe = — (F,P,)EIE!.

Equatlon (3.15) shows that the functions [°¢, are invariant in each neighbor-
hood U of M.

Let X and Y be two arbitrary vector fields in the base space M. Then,
because of (3.6), 7, X* has in U components of the form

(r2X ")t = (YFXVE", + (hnr,Y"X DE",

Xe and Y* being the components of X and Y in U = =(U). 1f we take ac-
count of (3.7) and (3.15), we find #(YF X*) = 0, which is equivalent to
the condition (£(F,y2X*)")" = 0. Therefore the Riemannian connection 7
is projectable. Thus, as a consequence of the definition (1.9) of the induced
connection ¥, we see that the vector field F.X has components of the form

YV X = Y@ .X* + 't X")

in U, where I'% appearing in the equation above are the projections of the
invariant function 7"%, appearing in (3.1) and (3.5). Consequently, the induced
connection F has 17¢, as its coefficients in U. On the other hand, the equation
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Vg = 0 is a direct consequence of Fg = 0. Therefore, we obtain the equation

3.17) re, = {c"b} ,

because of /™%, = I'?, and Fg =0, {fb} being the Christoffel’s symbols de-
termined by g.,. Thus we have

Proposition 3.1. In a fibred space with projectable Riemannian metric g,
the Riemannian connection V determined by g is projectable and the induced
connection V coincides with the Riemannian conrection determined by the
induced metric g = pg.

Taking account of (3.10) and (3.16), we have

Proposition 3.2. In a fibred space with projectable Riemannian metric, the
second fundamental tensors h and H are projectable if and only if (d1)¥ =0,
and the curvature vector field P of fibres is projectable if and only if (dA)Y = 0,
where A and P are defined respectively by (1.16) and (1.18). Both h and P
are projectable if and only if the 1-form 1 is closed.

Proposition 3.3. In a fibred space with projectable Riemannian metric, P
= 0 holds if and only if (F;P)¥ = 0; i(X, P)=0, or, equivalently, i(HX)=0
holds for an element X of Y M) if and only if (V 3uP)” = 0.

Van der Waerden-Bortolotti covariant derivatives. Let there be given an
element of the formal tensor product (M) #%.75(M), say, T belonging to
T M) THY(M). Then T is expressed as follows: T = T/, $¢,4 L2 ¥ B,
in each neighborhood U of M, T,7,* being certain functions in U, where {¢,}
= {9/dx7} is the natural frame of coordinates (x*) defined in U, {&*} the dual
base to {&,}, B, local vector fields with components E*,, and £* the local co-
vector fields with components E;®, all in U. We call 1,7, the components of
T in (U, U), where U = z(U). Let i: 7 (M) # T#(M) — I (M) be the linear
homomorphism defined by (I.1) in §1. Then the image T = i(T) has in U
components of the form

(3.18) Tolh = Tl eEE?, ,

and the van der Waerden-Bortolotti covarié.nt derivative VT of T has, in
(U, U), components of the form

(3.19) ﬁlTkjba =0, + {lr]n} Tempe — {Z:} y R

]

by virtue of (W.1)~(W.4) given in §1 (Cf. [8], [9]). We put conventionally
in U '
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toms s [H]e- 3o
(3.20) .
VJ'Eia = ajEza - {jl‘]Ena + {Cb]E ¢E;®,

‘which are the components of (7B,)" and (FZe)" respectively. If we take ac-
count of (3.18), (3.19) and (3.20), we have the formula

VT = V(T ELER,)

3.21 . . .
2D = (V. T,2)ELEr, + T,0,2(V ,EX)Er, + T, 1,2E2(V ,E*,),

which are the components of T = 7(T) in U. The first equations of (3.1)
and (3.5) reduce respectively to

ﬁthb = hchchh' - hbanEh'a - PbEth 3’

(3.22) .
VjEia = hcancEi + hbanEib —_— PanEi >

which are the co-Gauss equations. )

Let there be given an element of 7 ”(M), say, § belongmg to I 1(M).
Let S,¢ be the components of $. Then S has, in (U, U), components of the
form

(3.23) V.8, = E; V8,5 + E3,5,%,
because of (3.19), where we have put
PSit = 08 + | s = {5 )5

the operators 9. and 3, being defined by 6. = E’8; and 3, = E’3,. On put-
ting § = i($), we have (FS)7 = (I(VS‘))” , which shows that (7S)# has com-
ponents of the form (V.S,*)E;°E,*E*,. Therefore we see that for an element
S of #HY(M), the projection p(ﬁi(S’)) = F(pS) has components of the form
Vcsba inU.

The Ricci formulas. As is well known, we have the Ricci formula

(3.24) ﬁkﬁjf” - 7‘7?};2’2 = ]Zkﬁ’lff

for any element X of JYM), X* being the components of X, where K, ;"
denote the components of the curvature tensor K of the projectable Rieman-
nian metric g given in M.

For any element of 7 (M) & ¥ (M ), say, T belonging to M) & 7 7YM),
we have the formula, by virtue of (3.19),

(3.25) ﬁkﬁjThb _ ﬁjﬁkThb = K—kjihTib -_ EzEJC-chbaTha >

where T*, are the components of 7" in (U, U), and



86 KENTARO YANO & SHIGERU ISHIHARA

(3.26) Kyeo® = 94 {cb} f{;b} + {;e} [ceb} B {Cae} [deb}

are invariant functions in U, the components of the curvature tensor K in
U. We denote by K, ;;* = K,2E*E fE*E*, the components of the lift K*
of K. The formula (3.25) is the Ricci formula for the van der Waerden-
Bortolotti covariant differentiation.

4. Geodesics

We have studied in [9] the behaviour of geodesics in a fibred space with
invariant Riemannian metric g, and proved six Propositions 4.1~4.6, where
we assumed the condition #g=0. In our present case, we can show that these
six Propositions 4.1~4.6, except Proposition 4.2, are all valid for any fibred
space with projectable Riemannian metric. We can prove now the following
proposition instead of Proposition 4.2 stated in [9].

Proposition. In a fibred space M with projectable Riemannian metric, the
projection of a geodesic given arbitrarily in M is also a geodesic in the base
space M with respect to the induced metric, if and only if the second funda-
mental tensor h or H vanishes identically.

5. Structure equations and curvatures

Let there be given a fibred space with projectable Riemannian metric 2.
Then, by a similar device as given in §4 of [9], taking account of (3.20) and
(3.22), we can prove the following structure equations:

5.1 Kie® — Kaep® = (Mashe® — heshy®) + 2h4chy*
(5.2) Ki® = W ahey — Vehay) + 2R, P, ,
(S~3) Kcho = aohcb + hcehbp + Vch - Pch

by virtue of the Ricci formula (3.24) and (3.25), where we have put

K_dcba = K—kﬁhEk(lchEibEha > chbo - K-kjihEktlE'itEibEha
Kou;o = K—kjihEkchEibE)n. 3

K., being the components of the curvature tensor K of 3. Equations (5.1),
(5.2) and (5.3) are called the co-Gauss equation, the co-Codazzi equation
and the co-Ricci equation respectively.

If we take account of the well known identity K,;;* + K,,,* + K., ;* =0,
we find the identities
(5.4 Vohey + Vlchbd + Vohye + hgePy + heoPy + hyyP. =0,

aohcb'i'E(Vch“‘Vch):O
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because of (5.2) and (5.3) respectively. The identities (5.4) are equivalent
to the identity d(dj) = 0, where 7 is the structure 1-form. Equations (5.2)
and (5.3) reduce respectively to

(5.5) Kyet® = — Vyhae + haoPy + hpePy — BygPe,
Rows® = hechs? + 2-(P.Py + V.Py) — PePy

by virtue of (5.4). Taking account of (5.1), we have

Proposition 5.1. If, in a fibred space with projectable Riemannian metric
£, the second fundamental tensors are projectable, then the curvature tensor
K of g is also projectable. When K is projectable, the equality pK = K holds
if and only if the second fundamental tensors vanish identically, where K
denotes the curvature tensor of the induced metric g = pg. (Cf. Proposition
5.11in [9).

Denote by 7(X, ¥) the sectional curvature with respect to the section de-
termined by two vectors X and ¥ in M, and by (X, Y) the sectional curva-
ture with respect to the section determined by two vectors X and Y in M.
Then, taking account of (5.1), we find

(5.6) (X, V) — f(X 5, YE) = 3{h(X " YOP(X ANY D20

for any two vector fields X and Y in M, where | X A Y| denotes the magni-
tude of the bivector X A Y in M. Therefore we have

Proposition 5.2. In a fibred space M with projectable Riemannian metric
g, the inequality ‘

X, lY))’- >H#XL, YY) for X,Ye FQ(M)

holds. The equality (y(X, Y))* = §(X*, Y*) holds for any two elements X and
Y of M) if and only if the second fundamental tensor vanishes identically
in M (Cf. [3]).

6. Fibred spaces with invariant Riemannian metric

Let there be given a fibred space (M, M, ; C, §) with Riemannian metric
£. When the condition

is satisfied, p being a certain function positive everywhere in M, the fibred
space is called a fibred space with invariant Riemannian metric g. (In a pre-
vious paper [9], we meant by a fibred space with invariant Riemannian
metric g a fibred space satisfying the condition ;g = 0.) The condition
(6.1) redues to
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(6.2) fgjiziji-{v-PiEj, P,:——ajlogp,

& denoting the Lie derivation with respect to C. Taking account of (2.8),
we get P, = P.E,c, which implies #p = 0, i.e., that the function p is in-
variant in M. Thus we have

Proposition 6.1. Any fibred space with invariant Riemannian metric g is a
fibred space with projectable Riemannian metric §. In a fibred space with in-
variant Riemannian metric, the curvature vector field P of fibres is projectable,
and its components are given by P, = — 3,log p, where p is the function ap-
pearing in (6.1), and is an invariant function in M.

In our case, P, is a gradient. Thus, taking account of Propositions 3.2
and 5.1, we have

Proposition 6.2. In a fibred space with invariant Riemannian metric g, the
second fundamental tensors h and H are projectable and the curvature tensor
K of g is also projectable.

As a consequence of (3.5), we have djj = — h — 7 A d(log o), which im-
plies d(p~'7) = — p~'h, and consequently

d(p'll'-l) =0, i.e., V(07 h,) + Vel hoy) + V(o hee) =0

The last equation is a consequence of (5.4), and P, = — 3, log p. The coho-
mology class determined in the base space M by the closed form p-*h.,dé*
A d&® is called the characteristic class of the given fibred space with invariant
Riemannian metric.
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